Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation.
نویسندگان
چکیده
Receptor activator of NF-kappaB ligand (RANKL) plays an essential role in osteoclast formation and bone resorption. Although genetic and biochemical studies indicate that RANKL regulates osteoclast differentiation by activating receptor activator of NF-kappaB and associated signaling molecules, the molecular mechanisms of RANKL-regulated osteoclast differentiation have not yet been fully established. We investigated the role of the transcription factor c-Jun, which is activated by RANKL, in osteoclastogenesis using transgenic mice expressing dominant-negative c-Jun specifically in the osteoclast lineage. We found that the transgenic mice manifested severe osteopetrosis due to impaired osteoclastogenesis. Blockade of c-Jun signaling also markedly inhibited soluble RANKL-induced osteoclast differentiation in vitro. Overexpression of nuclear factor of activated T cells 1 (NFAT1) (NFATc2/NFATp) or NFAT2 (NFATc1/NFATc) promoted differentiation of osteoclast precursor cells into tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated osteoclast-like cells even in the absence of RANKL. Overexpression of NFAT1 also markedly transactivated the TRAP gene promoter. These osteoclastogenic activities of NFAT were abrogated by overexpression of dominant-negative c-Jun. Importantly, osteoclast differentiation and induction of NFAT2 expression by NFAT1 overexpression or soluble RANKL treatment were profoundly diminished in spleen cells of the transgenic mice. Collectively, these results indicate that c-Jun signaling in cooperation with NFAT is crucial for RANKL-regulated osteoclast differentiation.
منابع مشابه
Signaling crosstalk between RANKL and interferons in osteoclast differentiation
Regulation of osteoclast differentiation is an aspect central to the understanding of the pathogenesis and the treatment of bone diseases such as autoimmune arthritis and osteoporosis. In fact, excessive signaling by RANKL (receptor activator of nuclear factor kappaB ligand), a member of the tumor necrosis factor (TNF) family essential for osteoclastogenesis, may contribute to such pathological...
متن کاملBajijiasu Abrogates Osteoclast Differentiation via the Suppression of RANKL Signaling Pathways through NF-κB and NFAT
Pathological osteolysis is commonly associated with osteoporosis, bone tumors, osteonecrosis, and chronic inflammation. It involves excessive resorption of bone matrix by activated osteoclasts. Suppressing receptor activator of NF-κB ligand (RANKL) signaling pathways has been proposed to be a good target for inhibiting osteoclast differentiation and bone resorption. Bajijiasu-a natural compound...
متن کاملAMP-activated protein kinase: the guardian of cardiac energy status.
Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells....
متن کاملSignaling Pathways in Osteoclast Differentiation
Osteoclasts are multinucleated cells of hematopoietic origin that are responsible for the degradation of old bone matrix. Osteoclast differentiation and activity are controlled by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and the receptor activator of nuclear factor-κB ligand (RANKL). M-CSF and RANKL bind to their respective receptors c-Fms and RANK to stimulate oste...
متن کاملTusc2/Fus1 regulates osteoclast differentiation through NF-κB and NFATc1
Tumor suppressor candidate 2 (Tusc2, also known as Fus1) regulates calcium signaling, and Ca2+-dependent nuclear factor of activated T-cells (NFAT) and nuclear factor kappa B (NF-κB) pathways, which play roles in osteoclast differentiation. However, the role of Tusc2 in osteoclasts remains unknown. Here, we report that Tusc2 positively regulates the differentiation of osteoclasts. Overexpressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 114 4 شماره
صفحات -
تاریخ انتشار 2004